On fractional Tikhonov regularization

نویسندگان

  • Daniel Gerth
  • Esther Klann
  • Ronny Ramlau
  • Lothar Reichel
  • D. Gerth
  • E. Klann
  • R. Ramlau
  • L. Reichel
چکیده

It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth, i.e., the approximate solution may lack many details that the desired exact solution might possess. Two different approaches, both referred to as fractional Tikhonov methods have been introduced to remedy this shortcoming. This paper investigates the convergence properties of these methods by reviewing results published previously by various authors. We show that both methods are order optimal when the regularization parameter is chosen according to the discrepancy principle. The theory developed suggests situations in which the fractional methods yield approximate solutions of higher quality than Tikhonov regularization in standard form. Computed examples that illustrate the behavior of the methods are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Tikhonov regularization for linear discrete ill- posed problems

Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of ...

متن کامل

Fractional Tikhonov regularization with a nonlinear penalty term

Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix and an error-contaminated data vector (right-hand side). This regularization method replaces the given problem by a penalized least-squares problem. It is well known that Tikhonov regularization in standard form may yield appr...

متن کامل

Fractional regularization matrices for linear discrete ill-posed problems

The numerical solution of linear discrete ill-posed problems typically requires regularization. Two of the most popular regularization methods are due to Tikhonov and Lavrentiev. These methods require the choice of a regularization matrix. Common choices include the identity matrix and finite difference approximations of a derivative operator. It is the purpose of the present paper to explore t...

متن کامل

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

Regularization by Fractional Filter Methods and Data Smoothing

This paper is concerned with the regularization of linear ill-posed problems by a combination of data smoothing and fractional filter methods. For the data smoothing, a wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the reconstruction, an approximation to the solution of the operator equation is computed from the data estimate by fractional filter methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014